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We analyse data on patient adherence to prescribed regimens and surrogate markers of
clinical outcome for 168 human immunodeficiency virus infected patients treated with
antiretroviral therapy. Data on patient adherence consisted of dose-timing measurements
collected for an average of 12 months per patient via electronic monitoring of bottle opening
events. We first discuss how such data can be presented to highlight suboptimal adherence
patterns and between-patient differences, before introducing two novel methods by which
such data can be statistically modelled. Correlations between adherence and subsequent
measures of viral load and CD4CT-cell counts are then evaluated. We show that summary
measures of short-term adherence, which incorporate pharmacokinetic and pharmacodynamic
data on the monitored regimen, predict suboptimal trends in viral load and CD4CT-cell counts
better than measures based on adherence data alone.

Keywords: HIV; antiretroviral therapy; adherence; compliance; protease inhibitor;
mathematical model
1. INTRODUCTION

The importance of good adherence to prescribed dose
levels and dosing times on the clinical outcome of
antiretroviral therapy has been clearly demonstrated
by past studies (Vanhove et al. 1996; Frottier et al.
1998; Montaner et al. 1998; Bangsberg et al. 2000, 2001;
Gross et al. 2001; Knobel et al. 2001; Masquelier et al.
2002; Alexander et al. 2003). The very high replication
rate of human immunodeficiency virus (HIV) within
the infected patient (Ho et al. 1995; Perelson et al. 1996,
1997; Ferguson et al. 1999) means that even single
missed doses can permit substantial viral replication to
resume, even if such replication might occur below the
limits of detection for current assays. A particular
concern with such replication is that it occurs on the
background of suboptimal but still inhibitory concen-
trations of drug—imposing a significant selection
pressure for outgrowth of resistant viral mutants.

However, the extent to which such concerns are
likely to be realized for an individual patient depends
orrespondence (neil.ferguson@ic.ac.uk).
C.A.D. contributed in equal part to this work.
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not only on their adherence behaviour, but also on
pharmacokinetic (PK) and pharmacodynamic (PD;
namely, the action of the drug on the target organism—
in this case, quantified by the degree of inhibition of
viral replication) characteristics of the drugs com-
prising the patient’s antiretroviral regimen (Ferguson
2002). Although the correlation between adherence
behaviour and outcome has been well studied, a
systematic examination of how that relationship is
affected by drug properties is still lacking.

Here, we examine adherence data for a total of 168
patients from three cohorts where electronic monitoring
of the timing of bottle opening events was undertaken.
We first introduce methods to visualize dose timing,
which provide deeper insight into adherence behaviour,
before characterizing adherence patterns seen in these
patients using a variety of summary measures of
adherence. Visualizing patient adherence patterns
gives insight into adherence behaviours, but simple
and statistically robust summary measures are needed
to gain a quantitative understanding of the variability
of adherence within a patient population, and to
correlate adherence with clinical outcome. These two
goals are not necessarily synonymous. Capturing
J. R. Soc. Interface (2005) 2, 349–363
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adherence behaviour requires construction of a statisti-
cal model able to reproduce ‘important’ characteristics
of observed patterns (Girard et al. 1998). Here, we
introduce new approaches to the modelling of dose
timings. The parameters of such models are themselves
summary statistics which describe aspects of adherence
behaviour. Their parameters can therefore be used to
categorize different types of adherence patterns (or look
at the social correlates of adherence) and thus
potentially provide caregivers with tools aimed at
improving patient adherence.

Conversely, in correlating adherence with clinical
outcome, we would optimally like a single summary
statistic that captures everything of clinical relevance
in any pattern of adherence and is hence predictive of
outcome. Towards this end, we use a simple math-
ematical model of viral replication and drug PK/PD to
derive new statistics designed to predict the impact of
observed patterns of adherence on viral load and
CD4CT-cell counts. We compare the performance of
these statistics in predicting clinical outcome (in terms
of viral load and CD4CT-cell count) with that of
simpler adherence statistics that do not incorporate PK
or PD data.
2. PATIENT DATA

Data on the timings of pill bottle opening of the
protease inhibitor (PI) component of antiretroviral
therapeutic regimens were collected via electronic
monitoring for a total of 168 patients for whom
monitoring had taken place over a minimum of
90 days. Of these patients, 108 were treated in 1998
and 1999, and their data collated by Clinical Partners
Inc., 23 patients were treated at the Kantonsspital
St. Gallen, Switzerland, in 1998 and 1999 and 37
patients were treated in 2000 and 2001 as a part of trial
M99-056. This trial was a phase I/II randomized, open-
label, multi-centre study of lopinavir/ritonavir once
daily (800/200 mg; investigational) versus twice daily
(400/100 mg; approved) in combination with stavudine
(d4T) and lamivudine (3TC) in HIV-infected antire-
troviral-naive patients (Eron et al. 2004). A 90 day
minimummonitoring period resulted in the exclusion of
12 patients from this analysis. A median of 12 months of
adherence data was available for each patient. Data on
prescribed regimens together with viral load and
CD4CT-cell count measurements (taken on average
every three months) were also available for all patients.
For the 131 patients from the Clinical Partners Inc.
and St. Gallen cohorts, the lower limit of
quantification (LOQ) for viral load measurements
was 400 copies mlK1, while for the 37 patients in trial
M99-056 the LOQ was 50 copies mlK1. We therefore
used greater than 400 copies mlK1 as the threshold for
virological rebound in the analyses presented here.

The most common PIs recorded in the study
population were saquinavir, indinavir and ritonavir
(RTV). This reflects the period over which most of the
data were collected. Substantial numbers of patients
using dual PI or ritonavir boosted regimens partici-
pated in the Clinical Partners Inc. cohort, while
lopinavir/ritonavir use was solely represented by trial
J. R. Soc. Interface (2005)
M99-056. Table 1 gives summary details of the range of
prescribed PI regimens represented in the combined
dataset. The range of ‘off-label’ dosing levels and
frequencies seen in table 1 should be noted.

Electronic monitoring of pill bottle opening events
provides much more detailed information on adherence
patterns than cruder quantitative measures (e.g. pill
counts), and is arguably more objective than self-
reported assessments of adherence (Kastrissios et al.
1998; Melbourne et al. 1999; Miller & Hays 2000;
McNabb et al. 2003). That said, the timing of bottle
opening events is not a perfect measure; patients may
remove more than the prescribed dose from a bottle
during a single opening (e.g. to avoid taking the bottle
with them all day), or may open a bottle without
removing any pills. However, correlating pill counts
with electronic monitoring data can detect such issues
in many cases.
3. VISUALIZING ADHERENCE DATA

The raw data for each patient were formatted as a list of
sequential dates and times corresponding to the open-
ing of the medication container, denoted by xZ(x1, x2,
., xND), where xND corresponds to the last recorded
opening. An example of the data collected is shown in
the first column of figure 1, where the date (day) and
corresponding time of the pill bottle openings are
plotted in an x–y scatter-plot. It can be seen from these
graphs that in general individuals endeavour to take
their pills at the same time each day.

A common representation of adherence data is in
terms of adherence to the prescribed number of daily
doses. This provides an initial impression of an
individual’s average or long-term adherence behaviour
with respect to pill counts. The empirical distribution
of the number of days on which n pills are taken (nZ0,
1, ., N ) is shown in the second column of figure 1.

By simply presenting the data in these two ways, two
key and quite distinct aspects of adherence behaviour
have been highlighted—adherence to the prescribed
number of daily doses and adherence to a nominal dose
time. A thorough summary of adherence behaviour
should capture both of these aspects, given that good
adherence to the prescribed number of daily doses does
not necessarily imply high levels of adherence to a
nominal dose time.

Because patients with the same dose-frequency
adherence can have very different dose-timing patterns,
a more detailed measure that quantifies this variation
in behaviour is required. Adherence to the prescribed
dosing interval is an obvious measure that can be used
to assess the level of patient adherence to a prescribed
regimen, because the interval between adjacent doses
should determine trough drug concentration in plasma
and thus the adequacy of inhibition of viral replication.

The third column of figure 1 shows how
representing dose-timing data by a plot of one dose
interval, diZxiC1Kxi against the next can provide
valuable information about adherence behaviour not
apparent from the earlier representations. Perfect dose-
timing and dose-frequency adherence is represented as
a single point at the prescribed dosing interval T. Poor

http://rsif.royalsocietypublishing.org/


Table 1. Numbers of patients prescribed the different protease inhibitor (PI) regimens represented in the combined dataset.

(The terms QD, BID and TID refer to a prescribed dosing frequency of one, two or three doses per day, respectively. Lopinavir is
listed as a single PI below, though is always prescribed with co-formulated low dose ritonavir.)

dosing
frequency drug dose (mg)

number of patients prescribed regimen

taken as
sole PI

taken with
indinavir

taken with
lopinavir

taken with
nelfinavir

taken with
ritonavir

taken with
saquinavir

QD lopinavir 800 18 —
nelfinavir 1250 1 —

BID indinavir 400 3 — 1
800 2 —
1000 1 —
1200 15 — 1 3

lopinavir 400 35 —
nelfinavir 500 1 —

750 2 —
1250 12 1 — 1

ritonavir 100 3 — 3
200 3 — 3
300 2 1 —
400 23 — 20
500 2 — 2
600 9 — 4

saquinavira 200 2 2 —
400 15 2 9 —
600 20 1 18 —
800 2 1 —

1000 1 —
1200 4 1 2 —

TID indinavir 400 1 —
800 36 — 1

1000 1 —
1200 4 —

nelfinavir 250 1 —
600 1 —
750 15 1 — 2

1000 2 — 1
saquinavir 600 8 1 —

800 1 1 —
1200 3 1 —

a Soft gel (Fortovase) formulation of saquinavir.
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dose-timing adherence is represented by scatter about
the point (T, T ), while poor dose-frequency adherence
is represented by the occurrence of points at dose
intervals which are a multiple of T. A common feature
of such plots is serial dependence between adjacent dose
intervals, indicated by a tendency of points to lie on the
xCyZ2T diagonal line. This reflects a systematic bias
away from equal adjacent dose intervals; for example,
someone on a BID regimen who took drug at 08.00 and
23.00 each day would generate a plot with 2 points at
(9, 15) and (15, 9).

A variant on the interval–interval plot is given by
plotting the time of day of one dose against the time-
interval between doses (fourth column, figure 1). This
again has the advantage of clearly representing both
dose-timing and dose-frequency adherence—the former
by the degree of scatter about the prescribed dosing
times on the x -axis, and the latter by the proportion of
points seen at 2T or above on the y-axis.

Lastly, another form of suboptimal adherence, which
is not well represented by plots intended to highlight
J. R. Soc. Interface (2005)
dose-frequency or dose-timing adherence, is the failure
to take many doses in succession—so-called ‘drug
holidays’. These are typically multi-day (e.g. weekend
or longer) periods during which drug is not taken, and
are best visualized using plots of the type shown in the
first column of figure 1. Such a drug holiday is clearly
evident in patient shown in figure 1d.

4. MODELLING ADHERENCE BEHAVIOUR

Currently, adherence is usually described by indices
which only summarize dose-frequency adherence, the
most commonly used being the fraction of doses taken,
p, and the daily count adherence (fraction of days the
prescribed number of doses are taken), c. This is largely
because detailed dose-timing information was rarely
available until the advent of electronic monitoring.

Even with such limited summary information, a
simple Markov model of dosing behaviour can be
constructed (Girard et al. 1998; Wong et al. 2003), in
which p represents the probability that the next dosewill
be taken. Equivalently, if there are N doses prescribed

http://rsif.royalsocietypublishing.org/
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Figure 1. Adherence data for a representative sample of patients (a) N126 (BID regimen), (b) H013 (TID), (c) 2203 (BID),
(d ) H021 (TID), (e) L109 (BID) and (f ) H011 (BID). First column: times of doses of drug against day of monitoring. Second
column: frequency distribution for number of pills taken per day. Third column: plots of dose interval (time between two
consecutive doses) against the next dose interval. Fourth column: scatter plots of time of dose against the interval from the
previous dose. For all plots, a day is defined as 03.00 to 03.00 the next day, so time 00.00 in real time represents 03.00 on the
graphs.
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per day, then thismodel equates to assuming thenumber
of doses taken in time period T is binomially distributed
as Bin(p,NT ) withmean pNT and variance p(1Kp)NT.
As seen in figure 2, this simple dosingmodel fits patterns
of frequency adherence very well for many patients, so
J. R. Soc. Interface (2005)
long as overall adherence levels are stationary through
time and drug holidays are excluded from the data.

Elaborations of this approach involve moving from a
1-stage Markov model to a two- or three-stage model in
which the probability of the next dose being taken is

http://rsif.royalsocietypublishing.org/
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Figure 2. Variance and mean of the number of doses taken in a time window (y -axis) plotted against duration of that window,
T(x -axis). For each patient, the variance is calculated across all windows of duration T that do not include a drug holiday
(defined to be a period of 2 or more days without a dose being taken). For (a)–(f ), results are for the same patients as in figure 1.
For (b) and (f ), only the first 10 weeks of the data shown in figure 1 were used, while for (d ), data from weeks 16–26 were used.
This was a result of significant temporal changes in overall adherence levels outside these periods.
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conditional on whether the previous one or two doses
were taken (Girard et al. 1998).

However, all such models solely describe dose-
frequency adherence. To incorporate dose-timing
adherence into the model, a number of approaches are
possible. One of the more sophisticated approaches is to
fit (using maximum-likelihood methods) a flexible
parametric or smoother non-parametric bivariate mul-
timodal probability density function to empirical joint
distributions of dose times and inter-dosing intervals.
An example of the results of fitting sophisticated
multivariate models of dose timing to empirical joint
distributions of dose times and inter-dosing intervals
(Hooper 2002) is shown in figure 3. Such models can be
used to simulate adherence behaviour which in turn
could be used in the PD modelling of drug action, or the
mathematical modelling of within-patient viral
dynamics (Ferguson 2002). They can capture much of
the detail of observed adherence behaviour (including
time-of-day biases, compensatory behaviour and con-
ditionality of the type included in the two-stage Markov
model). The drawback of such models is that they are
mathematically complex and the parameter estimates
generated from the models are difficult to interpret. As
such, while these types of approaches may represent the
gold standard of future adherence modelling, there is a
more immediate need for simpler, more intuitive
models. Therefore, we focus here on simpler approaches
that build incrementally on past work.

We assume a binomial model Bin(p,N ) for the
number of doses in a day (justified by the fit of the
binomial model to long-term variance–time curves; see
figure 2). The boundary of a day is best selected to be a
time of minimum dosing frequency, such as 03.00,
rather than midnight, given a significant fraction of
individuals take their ‘evening’ dose for a day after
midnight, before sleeping. Each 24 h period is then
divided into N equal width 24/N hour sequential
J. R. Soc. Interface (2005)
windows, labelled jZ1, 2,., N. The distribution of
dose times in the j th dosing window is then modelled as
a truncated normal density function

pðtj Z tÞZ
f ðtjtj ; sjÞÐ tS;jC24=N

tS;j
f ðtjtj ; sjÞdt

;

where

f ðtjtj ; sjÞZ exp K
1

2

tKtj

sj

� �2� �
:

Here, tS,j is the start time of the j th window, tj is the
mode of the time distribution of the j th daily dose and
sj characterizes the timing error of the j th dose. So long
as sj/tjK tS;j and sj/ tS;jC24=NKtj (assuming
time units of hours), as is mostly the case, tj is
approximately equal to the average time at which the
j th dose is taken. Hence, the mean and standard
deviation of the dose times in the j th window are
usually a good approximation to the maximum-
likelihood estimates of tj and sj .

In general, we found no clear difference between the
dosing errors for different dosing intervals j for the
patient data we examined. Hence, the above model can
be simplified by assuming sjZs for all j. Additionally,
one of the tj is uninformative (therapeutic benefit is
determined only by the interval between doses, not by
the time of day of the first dose). Hence, we are left
with a model with NC1 informative parameters—p, s
and DjZtjC1Ktj , where jZ1, 2, ., NK1. All are
intuitively interpretable—p is the proportion of doses
taken, s is the standard deviation of the random
dose-timing error and Dj represents any systematic
dose-timing bias.

Because systematic biases in dosing periods observed
for a few patients tend to be related to the habitual
missing of particular doses each day, the model can
usefully be generalized to model the probability of

http://rsif.royalsocietypublishing.org/
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taking a dose in each dosing window separately, using a
Bernoulli distribution with dosing window-specific
mean pj. In addition, some patients exhibit correlations
between the timing errors of adjacent doses. However,
such effects are relatively minor (Hooper 2002).

Fitting the latter model to the dose-timing data for
all 168 patients, figure 4 shows the resulting distri-
butions of the estimated values for p, s and Dj, while
figure 5 shows the joint distribution of estimates of
p and s. As perhaps might be expected, very good dose-
timing adherence (s!ca 0.5 h) is highly predictive of
excellent dose-frequency adherence, but the converse
was not true.

Small mean differences were observed in the values
of p for subjects enrolled in the Clinical Partners
(0.91G0.02), St. Gallen (0.96G0.05) and M99-056
(0.98G0.03) cohorts. In addition, no significant differ-
ence was seen in the estimated values of Dj . Significant
differences were noted, however, in timing adherence
between subjects enrolled in the Clinical Partners Inc.
cohort and the other two cohorts. For instance, for BID
regimens, sZ2.5G0.3 for subjects in the Clinical
Partners Inc. cohort, sZ1.5G0.5 for subjects in the
St. Gallen cohort and sZ1.6G0.4 for subjects in the
M99-056 cohort.

This model does not attempt to capture another
form of non-adherence—long periods of time during
which drug is not taken, often termed drug holidays.
J. R. Soc. Interface (2005)
Figure 6 shows the distribution of the number of drug
holidays taken across the patient population and the
duration of these holidays. A drug holiday is defined
here as a period of two or more days during which no
drug is taken.

A number of patients show discontinuous changes in
adherence behaviour at certain times—perhaps associ-
ated with regimen or lifestyle changes. For example, in
the combined dataset examined, 39 patients experi-
enced at least one regimen change involving a change in

http://rsif.royalsocietypublishing.org/


0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4 5 6 7 8 9 10
11

–
15

16
–

20
21

–
25

26
–

30
>

30

number of drug holidays

pr
op

or
tio

n

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

2 3 4 5 6 7 8 9 10
11

–
12

13
–

14
15

–
16

17
–

18
19

–
20

21
–

22
23

–
24

25
–

26
27

–
28

29
–

30
>

30

duration (days)

(b)

Figure 6. (a) Distribution (across all 168 patients) of the number of drug holidays (periods of 2 days or more where no doses were
taken) observed per patient. (b) Distribution of the duration of drug holidays across all 168 patients (2 days being, by definition,
the minimum duration).
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dose frequency. Models of the type discussed above are
only suitable for modelling relatively stationary adher-
ence time-series. Therefore, where discontinuous
changes occur, the model must be fitted separately to
the data collected in the time periods between such
discontinuities.

A certain degree of arbitrariness remains in the
definition of the model—for instance in the assignment
of the start times of the N dosing periods, tS,j . The
choice used here (i.e. starting the day at 03.00)
attempts to minimize the chance of incorrect classifi-
cation of individual doses into the wrong dosing
interval, but such boundary effects are impossible to
eliminate completely. Some improvement might be
possible by defining the dosing periods to be symmetri-
cal about the tj , and only estimating the tj from days
where all N doses are taken, but we did not investigate
the (probably limited) benefits to be obtained, through
such an increase in model complexity. Lastly, the model
does not allow for over-dosing. The frequency of over-
dosing within a day was low—32 patients showed some
evidence of overdosing for one or more elements of their
regimen, but the level of excess dosing was low, with
only seven patients taking more than 105% of the
prescribed number of doses. Furthermore, the relation-
ship between inhibition and concentration for simple
Emax models appropriate for characterizing antiretro-
viral agents (Ferguson et al. 2001) indicates the effect of
an excess dose on virological suppression is minor
compared with the impact of missing a dose (provided
that the patient did not experience a safety/tolerabil-
ity-related event that could have affected plasma drug
levels associated with the antiretroviral regimen being
used).
5. DERIVATION OF CLINICALLY PREDICTIVE
SUMMARY MEASURES OF ADHERENCE

The negative impact of poor adherence on clinical
outcome (as quantified using surrogate markers of
clinical outcome such as plasma viral load or CD4CT-
cell count) has been demonstrated with a wide range of
summary measures of adherence behaviour, including
some of the statistics discussed above (Vanhove et al.
1996; Frottier et al. 1998; Montaner et al. 1998;
J. R. Soc. Interface (2005)
Bangsberg et al. 2000, 2001; Gross et al. 2001; Knobel
et al. 2001; Masquelier et al. 2002; Alexander et al.
2003). This past work allows the construction of
statistical models to predict the probable impact of
any particular pattern of adherence on outcome.
However, such models are purely correlative rather
than mechanistic—that is, they do not attempt to
estimate the impact of irregular dosing on drug
effectiveness and thus the probable impact on viral
replication.

Here, we construct a simple mathematical model
that translates dosing times collected via electronic
monitoring into drug concentrations through time.
The model then estimates the impact of those varying
drug levels on suppression of viral replication and
thus the extent of residual viral replication likely to
occur during any monitored period of therapy. The
model developed is very simple and ignores PK and
PD variability between patients, variation in drug
concentrations in different body tissues, evolution of
resistant virus (though the model output can be seen
as predictive of when resistance might be expected to
evolve) and details of the interaction between HIV
and its target cell population (see Wahl & Nowak
(2000) for a more detailed treatment of HIV and
T-cell dynamics in the context of adherence model-
ling). Our aim was to create pharmacologically
motivated statistics summarizing adherence beha-
viour and to explore whether these were better
predictors of clinical outcome than the simple dose-
frequency and dose-timing adherence statistics dis-
cussed earlier.

The first stage—generating predicted concen-
trations of drug through time from dosing time-
series—is, in principle, straightforward, requiring
only a suitably validated multiple dosing PK model
for each drug in use. However, in practice, drug
interactions, nonlinear clearance, protein binding and
induction processes make detailed modelling
complex. We therefore adopt the simplest possible
PK model—zero-order absorption, first-order clear-
ance, with no drug interactions

CAðtÞZ
X
i:xi!t

CA
max2

KðtKxAi Þ=kA zCA
max2

KðtKxAlastÞ=k
A

:
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Table 2. Pharmacokinetic/pharmacodynamic (PK/PD) parameters for licensed protease inhibitors, as derived from the
literature.

(k is the effective half-life of drug—i.e. the half-life allowing for induction effects; Cmax is the peak concentration of drug reached
after taking a dose; protein-bound and non-bound.)

drug regimen
dose
(mg) k (h) Cmax (mg mlK1) IC50

a (mg mlK1) references

amprenavir BID 1200 2.6b (2–10; 4.8b with
RTV)

7.7 (3–8) 0.28G0.2 Adkins & Faulds (1998) and
GlaxoSmithKline (2002)

indinavir TID 800 1.4b (1–2; 3.2 with
RTV 100)

7.7 (5–11; 50%
greater with
RTV)

0.06G0.02 Merck & Co., Inc. (1999) and
van Heeswijk
et al. (1999)

nelfinavir BID 1250 5.4G2, 7.1G2.5 with
RTV

3.6G0.8, 4.3G1
with RTV

0.52G0.3 Jarvis & Faulds (1998) and
Kurowski et al. (2002)

ritonavir BID 600 3.2 (3–5) 11.2G3.6 0.96G0.2 Abbott (1999)
saquinavirc BID 800 3.2b (4.9–8.7) with

RTV (Buss et al.
2001)

0.53 (0.2–4), 4.5
(2.8–7.3) with
RTV (Buss
et al. 2001)

0.25G0.2 Barry et al. (1997) and Roche
(1997)

lopinavir/
ritonavir

BID 400 5–6 9.0 (7–11) 0.06G0.03 Abbott (2001)

a Values are averages of values measured in 50% human serum to HIV wild-type laboratory strains IIIB, pNL4-3 and HXB2
(Molla et al. 1998).
b These half-lives are calculated to be consistent with Cmin and area under curve (AUC) measurements under the assumption
of instantaneous absorption and first-order elimination. This was because for many studies the quoted direct estimates of
plasma concentration decay slopes averaged across patients are inconsistent with quoted Cmin and AUC values assuming the
simplified PK model used here.
c The values quoted apply to Fortovase. Invirase is assumed to have the same IC50 and k values, but 50% of the Cmax of the
same dose of Fortovase.
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Here, CA(t) is the concentration of drug A at time t,
CA

max is the peak concentration of drug reached after
taking a dose, x i

A is the chronological time that
dose i of drug A was taken and kA is the ‘effective
half-life’ of drug; that is, the half-life allowing for
induction effects (i.e. from low dose ritonavir used as
a PK enhancer; see §7 below). The approximate
equality (where xAlast is the time of the last dose
before time t) holds if kA is much smaller than any
likely inter-dose interval (i.e. 2KD=kA/1). Table 2
lists the PK and PD parameter values assumed for
the PIs used by the patients included in this
analysis. We assume that within the dose ranges
observed, CA

max scales linearly with dose.
We then need to translate drug concentration into

PD effect; namely, the extent to which drug inhibits
viral replication. We assume a simple Emax model with
a slope parameter of unity (Ferguson et al. 2001)

I ðtÞZ 1K
1

CAðtÞ=ICA
50 C1

;

where ICA
50 is the concentration of drug A at which 50%

inhibition is achieved. There are multiple issues
surrounding the measurement of IC50 and PD response
more generally (Ferguson et al. 2001), but one of the
most important factors for PIs is to correctly account
for protein binding. Therefore, we use IC50 values
measured in the presence of human serum (Molla et al.
1998).

The above formulation accounts for inhibition due to
a single drug only. In the case of multiple drugs acting
non-synergistically (Ferguson et al. 2001), the combined
J. R. Soc. Interface (2005)
effect of two drugs, A and B, from the same class is
additive,

I ðtÞZ 1K
1

CAðtÞ=ICA
50 CCBðtÞ=ICB

50 C1
;

while the combined effect of two drugs, A and C, from
different classes is multiplicative,

I ðtÞZ 1K
1

ðCAðtÞ=ICA
50 C1ÞðCCðtÞ=ICC

50 C1Þ
:

However, for this study, only dose-timing data on the
PI component of regimenswere available for all patients.
Hence, we model inhibition from that component of the
regimen only. Furthermore, while 40% of patients
studied were at some point on a multiple PI regimen
(excluding those on lopinavir/ritonavir), in 51% of
these, this regimen consisted of ritonavir plus another
PI. For such regimens the effect of ritonavir in inhibiting
the cytochrome P-450 CYP3A metabolism of other PIs
outweighs the viral inhibitory effect of ritonavir itself
(Kempf et al. 1997; Hsu et al. 1998). Hence, for
simplicity, we assume such dual PI therapy can be
modelled as a single drug, but use PK parameters for the
non-ritonavir PI adjusted for the PK-enhancing effect of
ritonavir (see table 2). Furthermore, we do not
distinguish between different dose levels of ritonavir; a
patient is classified as being on a PK-enhanced PI
regimen on a particular day if they took one or more
doses of ritonavir that day, plus one or more doses of
another PI. These assumptions clearly represent an
approximation given ritonavir may have an antiretro-
viral effect at doses as low as 200 mg BID. However,
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these effects are likely to be small by comparison to the
antiretroviral action of the ‘boosted’ PI.

The final and most tentative step is using estimated
inhibition time-series to evaluate the probable impact
of drug on virus replication. A wide variety of complex
models are possible, but most cannot be solved
analytically, limiting their usefulness as a simple
transform of adherence data. We therefore adopt a
simple exponential growth model. This is then modified
heuristically to impose maximum and minimum limits
on viral load, so as to mimic the effect of the long-lived
infected (CD4CT-cell or macrophage) cell pool in
sustaining virus (Perelson et al. 1997; Ferguson et al.
1999) even under effective therapy, and target-cell
saturation or immune-limited viral replication when
drug is ineffective (De Boer & Perelson 1998; Fraser
et al. 2001). Our model of exponential growth is

dV

dt
Z r ½1KI ðtÞ�V KaV ;

where r is the replication rate of virus in the absence of
drug, and a is the decay rate of virus when inhibition is
complete. The former parameter is best estimated from
the rebound kinetics of viral load seen in patients
undergoing treatment interruption (Frost et al. 2002),
although data from primary infection can also be useful
(Little et al. 1999). Available data indicate rZ1/12 hK1

(i.e. 2 dK1) to be reasonable. The latter parameter is
determined not by the half-life of virions in plasma, but
by the slower time-scale process of infected activated
CD4CT-cell death (Ho et al. 1995; Perelson et al. 1996,

1997; Ferguson et al. 1999). A value of aZ1/24 hK1

(i.e. 1 dK1) is assumed here.
The solution of this equation is

Ui Z
ViC1

Vi

Z exp r

ðxiC1

xi

½1KI ðtÞ�dtKaðxiC1 KxiÞ
� �

;

where ViC1 and Vi are the viral loads at the time the
(iC1)th and i th monitored drug dose were taken
respectively, and Ui is their ratio.

Substituting in for I(t) for a single drug and
evaluating the integral gives, with some manipulation,

Ui Z
CA

max=IC
A
50 C2di=k

CA
max=IC

A
50 C1

 !kr=ln 2

exp½Kadi�;

where diZxiC1Kxi.
The expected viral load at dose time i can then be

calculated as

Vi ZV0

YiK1

jZ0

Uj : (5.1)

In this context, our approach of modelling multiple PIs
as a single boosted PI has the advantage that inhibition
can be calculated as if generated by a single drug. In this
case, the simpler mathematical formulation means that
the above closed-form solution for expected viral
replication can be used. If multiple drugs were
explicitly modelled, then the more complex expression
for inhibition would necessitate numerical evaluation of
J. R. Soc. Interface (2005)
the integral over inhibition between doses. This would
complicate the analysis substantially.

As it stands, thismodel predicts that viral load can fall
at the first phase exponential decay rate (Ho et al. 1995;
Perelson et al. 1997) without limit, or conversely can
grow without limit if drug-induced inhibition of replica-
tion is inadequate. We therefore employ a simple
heuristic mechanism for limiting maximum and mini-
mum viral load. If Vi is the estimated viral load at dose
time i, then ViC1 is given by

ViC1 ZVminCðVmaxKVminÞtanh
Vi KVmin

VmaxKVmin

"

!
CA

max=IC
A
50C2di=k

CA
max=IC

A
50 C1

 !kr=ln 2

exp½Kadi�
#
;
ð5:2Þ

where Vmin is the minimum viral load, and Vmax is the
maximum attainable set point viral load (here assumed
to be 106 copies mlK1). The precise value of Vmin is
uncertain, but since a low residual level of viral
replication is known to occur under even themost potent
regimens (Ferguson et al. 1999; Fraser et al. 2001), we
assume a value of 1 copy mlK1; below the limits of
quantification of currently available commercial assays.
Equation (5.2) is iterated to calculate Vi from V0. As
Vmax/N and for VminZ0, this model reduces to the
earlier non-limited form. It should be noted that while a
tanh(x) functional form is used in equation (5.2), other
saturating functions, which are linear for small values of
the argument, could equally be used.

Subsequent development of this model to link the
adherence patterns and PK/PD properties to CD4CT-
cell counts would require additional assumptions and
simplifications. Furthermore, given the relative simpli-
city of this model and the many patient-specific factors
it ignores, we do not expect to be precisely predictive of
viral load at a given time point. Thus, we test how
these measures are correlated with viral load and
CD4CT-cell measurements for our patient data.
6. CORRELATION OF ADHERENCE WITH
OUTCOME

In examining the correlation between adherence and
outcome, a number of approaches are possible. Much
previous work (Vanhove et al. 1996; Frottier et al. 1998;
Montaner et al. 1998; Bangsberg et al. 2000, 2001; Gross
et al. 2001; Knobel et al. 2001; Masquelier et al. 2002;
Alexander et al. 2003) has compared aggregate outcome
measures (e.g. proportion of viral load measures below
detectable, viral load at a certain time point, or
CD4CT-cell increase since start of therapy) with
similar long-term average measures of adherence to
establish the broad importance of adherence to
successful therapeutic outcome.

Here, we use a different approach, and instead
examine the correlation between individual viral load
and CD4CT-cell count measurements through time
with adherence in a period of time leading up to those
measurements being taken. In undertaking such an
analysis, it is of particular interest to determine the time
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Table 3. Correlation in adherence measures (calculated over the 7 days before clinical measurements, except L2) overall (with
p-value, given below the diagonal, obtained assuming all observations are independent) and patient-specific (median and
interquartile range given above the diagonal).

(pIC50, L1 and L2 incorporate pharmacokinetic/pharmacodynamic (PK/PD) properties of the drugs.)

p s.d. var pIC50 L1 L2

p 1 K0.612
(K0.955,
0.233)

K0.585
(K0.953,
0.201)

K0.803
(K0.989,
K0.432)

K0.836
(K0.976,
K0.370)

K0.48
(K0.830,
K0.025)

s.d. K0.574
(p!0.0001)

1 0.997
(0.985, 1.000)

0.945
(0.821, 0.999)

0.945
(0.634, 0.992)

0.426
(K0.201, 0.884)

var K0.458
(p!0.0001)

0.865
(p!0.0001)

1 0.977
(0.854, 1.000)

0.956
(0.624, 0.997)

0.446
(K0.173, 0.890)

pIC50 K0.397
(p!0.0001)

0.523
(p!0.0001)

0.432
(p!0.0001)

1 0.996
(0.963, 1.000)

0.547
(0.087, 0.962)

L1 K0.264
(p!0.0001)

0.38
(p!0.0001)

0.311
(p!0.0001)

0.85
(p!0.0001)

1 0.483
(K0.074, 0.832)

L2 K0.328
(p!0.0001)

0.339
(p!0.0001)

0.191
(p!0.0001)

0.562
(p!0.0001)

0.663
(p!0.0001)

1
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period prior to outcomemeasurement forwhich different
adherence measures are most predictive. The multiple
time-scales involved in HIV pathogenesis (Ferguson et
al. 1999; Fraser et al. 2001) mean that making a priori
estimates of this time period is difficult. In the absence of
drugs, viral load typically rebounds to above detectable
levels in amatter of days toweeks (Frost et al. 2002), so it
might be expected this would also be the most relevant
time-scale when correlating adherence with viral load
measures. However, long-term suppression depends on
consistently good adherence, so adherence measured
over longer time-scales might also be expected to be
predictive.CD4CT-cell counts have dynamics occurring
on a somewhat slower time-scale. Therefore, it might be
expected that this outcome measure is less sensitive to
short-term adherence patterns, and more dependent on
longer-term behaviour.

We focus on two binary outcome measures (viral
load%400 copies mlK1 and CD4CT-cell count%600
cells mmK3) and test their associations, using logistic
regression, with measures of both dose-timing and dose-
frequency adherence. Specifically, these measures are
the proportion of doses taken, variance and standard
deviatian of inter-dose interval, the estimated pro-
portion of time with drug concentration below IC50,
denoted pIC50, as well as the two measures of residual
viral replication. The viral load threshold was chosen to
be 400 copies mlK1 because this was the threshold for
detection for the Clinical Partners Inc. and St. Gallen
patients. The value of 600 cells mmK3 chosen for
CD4CT-cell count threshold is a relatively demanding
measure of clinical success, but sensitivity analysis
varying this threshold showed that, for the patient
population studied, this choice gave the binary
CD4CT-cell count outcome which was best predicted
by the adherence measures examined. These viral-
replication-related measures were defined to be the log
of predicted viral load as previously derived (see
equations (5.1) and (5.2) above) such that

L1 Z log V0

YiK1

jZ0

Uj

 !
Z logðV0ÞC

XiK1

jZ0

logðUjÞ;
J. R. Soc. Interface (2005)
and ignoring the additive constant

L1 Z
XiK1

jZ0

logðUjÞ:

L2 Zlog Vmin CðVmax KVminÞtanh
Vi KVmin

Vmax KVmin

2
4

0
@

!
CA

max=IC
A
50 C2di=k

CA
max=IC

A
50 C1

 !kr=ln 2

exp½Kadi�

3
5
1
A

:

The predictors, except for L2, were calculated over
various time-intervals (3, 5, 7, 14, 21, 28 and 35 days)
prior to the clinical measurement.

Analyses were undertaken using both simple
logistic regression and generalized estimating
equations (GEE; Liang & Zeger 1986; Zeger &
Liang 1986). The former allows between- and
within-patient information to be used equally and
the latter adjusts for within-patient correlation
thereby discounting between-patient differences. Fur-
thermore, a second set of analyses was undertaken
adjusting for categorical drug effects in addition to
the measures of adherence. Although the inclusion of
such effects would reduce the predictive power of the
L1 and L2 parameters and the estimated proportion
of time with drug concentration below IC50 (given
that these were specifically derived to take into
account between-drug differences), the other par-
ameters examined might be expected to be more
predictive when between-drug effects are allowed for.

Only a single adherence measure was included in
each model due to the strong correlation between the
measures examined. Table 3 demonstrates the signifi-
cant and strong (in terms of large absolute magnitude)
correlations between different adherence measures
calculated over the 7 days prior to each clinical
measurement. Patient-specific correlations were stron-
ger still.

Data from Kantonsspital St. Gallen, Switzerland
were not included in these analyses due to the small
number of viral load measurements greater than 400
copies mlK1 (less than 2% of measurements). Viral load
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data from both Clinical Partners Inc. and trial M99-056
were analysed. However, the models can be fitted only
to viral load and CD4CT-cell count data without
systematic temporal trends. Therefore, given that M99-
056 was a trial of first therapy in previously antire-
troviral-naive patients, the first 120 days of viral load
data for each patient were excluded from this analysis.
This period represents the typical interval over which
viral load fell from pre-therapy set point levels to on-
therapy residual levels. Moreover, since increases in
CD4CT-cell counts following initiation of therapy
occur over a much longer time-scale than falls in viral
load, it was not possible to incorporate the CD4CT-cell
counts from M99-056 in this analysis. Thus, only
CD4CT-cell count data from Clinical Partners Inc.
were analysed.

Table 4 presents the results from the logistic
regression and GEE analyses exploring the correlation
between viral load and CD4CT-cell count outcome
measures and the short-term adherence measures
described above. It is clear that substantial portions
of both within- and between-patient variation in
outcomes can be explained by adherence to antiretro-
viral therapy regimens. As expected, the viral-replica-
tion-related predictors (namely, pIC50, L1 and L2) were
strongly predictive of viral load and (except for L2)
CD4CT-cell count. Indeed, when categorical drug
effects are not explicitly included in the models, L1

and L2 are the best predictors of viral-load. They are
superior to the non-pharmacologically based adherence
measures although the latter are clearly seen to be
predictive of both viral load and CD4CT-cell count
outcomes. Associations between the non-pharmacologi-
cally based measures and viral load were strengthened
when drug effects were included.

These results demonstrate the importance of
good adherence in terms of both dose frequency and
dose timing in controlling viral load and improving
CD4CT-cell counts. The significant correlation
obtained (using GEE methods) between adherence
and outcome based on within-patient differences under-
line the potential for patient outcomes to be improved
by interventions that lead to improvements in patient
adherence. However, the full consequences of past poor
adherence may not be fully reversible, if, for example,
viral drug resistance had already developed.

It is reassuring to see that summary measures that
take into account PK and PD properties of the
antiretroviral drugs explain between-patient variation
particularly well, despite the fact that other key
determinants of between-patient variation in both
viral load and CD4 counts are not accounted for.
Thus, further analyses of larger patient populations
using these methods, when such data become available,
could estimate the proportion of variation in outcomes
between patient subgroups that is due to systematic
differences in adherence practices.
7. DISCUSSION

Understanding determinants of clinical outcome for
antiretroviral therapy in HIV infection is fundamental
to improving the long-term sustainability of treatment.
J. R. Soc. Interface (2005)
The difference between treatment success levels seen in
controlled clinical trials and those in observational
studies can be marked, and adherence is often suggested
as a potential cause (Deeks et al. 1997; Staszewski et al.
1999; Matthews et al. 2002). Indeed, it is a truism that
patient adherence is critical to treatment success—a
drug needs to be taken to have an effect. However,
quantifying the impact of adherence on the real-world
efficacy of antiretroviral regimens is far from straight-
forward. It requires real-world patterns of adherence
behaviour to be characterized, and the relationship
between particular patterns of adherence and clinical
outcomes to be quantified. This paper approaches these
challenges in three ways: visualizing adherence pat-
terns captured by electronic monitoring of pill bottle
openings; using simple models to describe individual
patterns of adherence and between-patient variability;
and developing new viral-replication-related measures
incorporating PK/PD to predict HIV treatment
outcome.

The variety of visualization approaches introduced
in figure 1 highlights a key aspect of observed adherence
behaviour: that dose frequency adherence (taking a
certain number of pills per day) is only a part of overall
adherence behaviour. Timing adherence—the extent to
which a patient takes drug doses at the prescribed
times, and the level of random and systematic deviation
from optimal (namely identical) inter-dose intervals—
is also crucial.

The simple model of dose timing introduced in this
paper nicely distinguishes these two aspects of adher-
ence behaviour (figures 4 and 5). It illustrates a key
observation—that a high level of dose frequency
adherence is not necessarily predictive of good adher-
ence to dose timing. Hence, both aspects of ‘good’
adherence behaviour may need to be given greater
emphasis in patient follow-up. The adherence model
developed is parameterized in terms of simple summary
statistics of frequency and timing adherence. The
distribution of estimated values of these parameters
provides insight into population variation in adherence
behaviour.

Further work is required to extend the adherence
model to capture longer time-scale changes in adher-
ence patterns, whether the result of long-term continu-
ous changes in behaviour, or discontinuities caused by
regimen changes or drug holidays. However, the model
presented here is sufficiently simple to be readily
embedded within more sophisticated frameworks.

In relating adherence behaviour to clinical outcome,
two strategies are available: developing a predictive
mathematical model of HIV replication incorporating
realistic PK/PD, or developing statistical (regression)
models capturing the observed correlation between
clinical outcome and adherence measures. The first
approach is mechanistic (in the sense of capturing
biological processes underlying clinical outcome), while
the second is purely descriptive. Mathematical model-
ling of HIV has been the topic of much past work
(Perelson et al. 1996, 1997; Bonhoeffer et al. 1997;
Ferguson et al. 1999; Phillips et al. 2001); however,
these models have rarely incorporated realistic PK/PD
or adherence behaviour (Wahl & Nowak 2000;
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Table 4. Logistic regression results.

(Significant results are presented in boldface type (and italicized for the log odds ratio) for emphasis. The predictors, except for
L2, were calculated over various time-intervals (3, 5, 7, 14, 21, 28 and 35 days) prior to the clinical measurement.)

days before clinical measurement

3 7 14 21 28 35

(a) analysis of the binary variable (viral load%400 copies mlK1) without categorical drug effects
p log odds ratio 0.142 1.163 1.253 1.176 1.379 1.420

p-value 0.807 0.025 0.027 0.057 0.029 0.031
GEE p-value 0.874 0.064 0.030 0.061 0.029 0.030

s.d. log odds ratio K0.026 K0.011 K0.013 K0.032 K0.025 K0.011
p-value 0.554 0.707 0.088 0.004 0.015 0.159
GEE p-value 0.553 0.689 0.137 0.031 0.005 0.160

var log odds ratio K1.400!10K4 5.280!10K4 K8.060!10K5 K3.542!10K4 K1.656!10K4 K1.989!10K5

p-value 0.955 0.703 0.177 0.027 0.205 0.750
GEE p-value 0.944 0.546 0.187 0.124 0.030 0.587

pIC50 log odds ratio K2.127 K2.243 K2.006 K2.381 K2.391 K1.702
p-value 0.014 0.004 0.008 0.003 0.004 0.050
GEE p-value 0.079 0.031 0.018 0.007 0.005 0.029

L1 log odds ratio K0.084 K0.032 K0.014 K0.010 K0.007 K0.005
p-value !0.001 !0.001 !0.001 !0.001 !0.001 !0.001
GEE p-value !0.001 !0.001 !0.001 !0.001 !0.001 !0.001

L2 log odds ratio K0.189
p-value !0.001
GEE p-value !0.001

(b) analysis of the binary variable (viral load%400 copies mlK1) with categorical drug effects
p log odds ratio 1.101 1.817 1.552 1.311 1.528 1.517

p-value 0.078 0.002 0.018 0.075 0.040 0.053
GEE p-value 0.206 0.022 0.055 !0.001 !0.001 !0.001

s.d. log odds ratio 0.026 K0.002 K0.021 K0.040 K0.036 K0.019
p-value 0.640 0.951 0.010 0.002 0.002 0.028
GEE p-value 0.610 0.949 0.042 !0.001 !0.001 !0.001

var log odds ratio 1.243!10K3 5.486!10K4 K1.288!10K4 K4.475!10K4 K2.624!10K4 K5.387!10K5

p-value 0.698 0.634 0.040 0.009 0.056 0.360
GEE p-value 0.583 0.409 0.073 !0.001 !0.001 !0.001

pIC50 log odds ratio K0.667 K1.085 K1.481 K1.291 K1.477 K0.929
p-value 0.540 0.263 0.113 0.202 0.158 0.413
GEE p-value 0.654 0.376 0.211 !0.001 !0.001 !0.001

L1 log odds ratio 0.004 K0.008 K0.005 K0.004 K0.002 K0.001
p-value 0.878 0.355 0.124 0.143 0.337 0.586
GEE p-value 0.898 0.469 0.261 0.247 0.411 0.654

L2 log odds ratio K0.129
p-value 0.005
GEE p-value 0.027

(c) analysis of the binary variable (CD4CT-cell count%600 cells mmK3) without categorical drug effects
p log odds ratio K1.437 K3.322 K5.037 K5.858 K6.135 K5.491

p-value 0.150 0.033 0.018 0.017 0.016 0.029
GEE p-value 0.067 0.024 0.030 0.014 0.016 0.011

s.d. log odds ratio 0.056 0.106 0.119 0.146 0.188 0.170
p-value 0.373 0.134 0.107 0.059 0.031 0.049
GEE p-value 0.398 0.143 0.128 0.038 0.025 0.013

var log odds ratio 0.002 0.009 0.011 0.014 0.019 0.018
p-value 0.562 0.228 0.163 0.139 0.097 0.108
GEE p-value 0.521 0.213 !0.001 !0.001 !0.001 0.022

pIC50 log odds ratio 2.354 3.124 2.952 3.737 3.817 3.950
p-value 0.097 0.040 0.062 0.031 0.029 0.040
GEE p-value 0.173 0.049 0.066 0.037 0.029 0.027

L1 log odds ratio 0.051 0.022 0.009 0.006 0.005 0.004
p-value 0.025 0.011 0.036 0.019 0.022 0.034
GEE p-value 0.082 0.032 0.066 0.037 0.043 0.053

L2 log odds ratio 0.032
p-value 0.552
GEE p-value 0.642

(Continued.)

360 Adherence and outcome in HIV treatment N. M. Ferguson and others

J. R. Soc. Interface (2005)

 rsif.royalsocietypublishing.orgDownloaded from 

http://rsif.royalsocietypublishing.org/


Table 4. (Continued.)

days before clinical measurement

3 7 14 21 28 35

(d ) analysis of the binary variable (CD4CT-cell count%600 cells mmK3) with categorical drug effects
p log odds ratio K1.449 K3.271 K5.059 K5.760 K6.058 K5.633

p-value 0.157 0.034 0.018 0.019 0.019 0.028
GEE p-value 0.076 0.024 0.032 0.017 0.017 0.010

s.d. log odds ratio 0.057 0.106 0.124 0.156 0.194 0.184
p-value 0.358 0.131 0.091 0.049 0.029 0.043
GEE p-value 0.370 0.137 0.114 0.036 0.022 0.013

var log odds ratio 0.002 0.009 0.012 0.016 0.020 0.019
p-value 0.542 0.219 0.139 0.112 0.085 0.096
GEE p-value 0.507 0.210 !0.001 !0.001 !0.001 0.026

pIC50 log odds ratio 2.269 3.036 2.910 3.604 3.584 3.818
p-value 0.111 0.046 0.067 0.039 0.041 0.050
GEE p-value 0.191 0.046 0.054 0.034 0.033 0.029

L1 log odds ratio 0.044 0.019 0.007 0.006 0.004 0.003
p-value 0.082 0.042 0.101 0.056 0.066 0.092
GEE p-value 0.239 0.099 0.141 0.103 0.121 0.140

L2 log odds ratio 0.025
p-value 0.631
GEE p-value 0.702
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Ferguson 2002). Existing models remain, at best,
exploratory rather than predictive. They highlight the
complex and nonlinear relationship predicted between
adherence and clinical outcome. However, these models
have not yet successfully been applied to predict the
outcome of a clinical trial, for instance. Purely
statistical approaches (Vanhove et al. 1996; Bangsberg
et al. 2001; Gross et al. 2001; Alexander et al. 2003) have
been used to demonstrate a strong correlation between
simple adherence statistics (e.g. proportion of doses
taken) and clinical outcome. However, such models are
at best weakly predictive and not easily generalized—
for example, in predicting differences between antire-
troviral regimens in the dependence of clinical outcome
on adherence levels.

It is for these reasons that we have developed an
intermediate approach by constructing a simple math-
ematical model of the relationship between adherence,
drug levels and viral replication. This model could be
solved analytically to provide a means of transforming a
time-series of pill bottle opening events into predicted
rates of viral replication over time. Despite the relative
simplicity of the model (e.g. only the PI component of
regimens is modelled, target cell dynamics are not
included, etc.), we have shown that the resulting
adherence statistics are better predictors of viral load
than a wide range of adherence measures that do not
incorporate PK/PD, when categorical drug effects have
not been included. Particularly encouraging is the
ability of these new measures to explain between-
patient differences in the relationship between adher-
ence and clinical outcome.

Future work will explore how the existing framework
can be extended to model multiple drugs simul-
taneously, with the aim of increasing the model’s
predictive ability. With more data than were available
for the current study, the methods presented here offer
the potential to distinguish differences between
J. R. Soc. Interface (2005)
antiretroviral regimens in how sensitive clinical out-
comes are to suboptimal adherence. Another focus will
be developing the model to predict transitions in viral
load or CD4CT-cell count, rather than just levels. This
is necessary because adherence thresholds associated
with initial suppression of viral load to below the assay
LOQ, maintenance of low viral load and viral load
rebound may be very different. Thus, a model focused
on predicting multiple transition types may have
improved predictive ability, albeit at the cost of
increased numbers of parameters.

We thank Abbott Laboratories for research funding. N.M.F.
also thanks The Royal Society and J.H. thanks the Medical
Research Council for fellowship and studentship funding. We
thank David Cox for advice on adherence modelling. N.M.F.,
C.A.D., A.C.G., C.F. and R.M.A. have previously acted as
paid consultants to Abbott Laboratories.
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